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The proline-catalyzed aldol reaction of racemic 2-(2 -pyrimidyl)ferrocenecarbaldehyde with acetone in
DMSO at room temperature constitutes as the first example of an organocatalytic kinetic resolution of
a planar-chiral compound. The selectivity factor of the kinetic resolution is 9.2, and the stereochemical
outcome of the process can be easily rationalized by the standard mechanistic model of the proline-cat-
alyzed aldol reaction.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Transition-state model for the L-proline-catalyzed intermolecular aldol
reaction.
1. Introduction

Over the past few years, much attention has been paid to the
enantioselective preparation of ferrocene derivatives exhibiting
planar chirality, given that ligands based on these systems have
found widespread use in asymmetric catalysis.1,2 The classical
routes to such compounds rely on the diastereoselective ortho-
metallation of the cyclopentadiene ring of suitable enantiopure
ferrocenes bearing stereogenic atoms at the a-position.3,4 More re-
cently, the direct enantioselective sparteine-mediated ortho-litia-
tion of achiral monosubstituted ferrocenes has been used in
some instances to access planar-chiral ferrocenes.5 Recent research
in our laboratory has been focused on the stereocontrolled synthe-
sis of b-ferrocenyl-b-aminoalcohols, a new class of central-chiral
ferrocene derivatives, and on the study of their synthetic applica-
tions.6 Over the course of these studies, we have developed an effi-
cient alternative mode of access to planar-chiral ferrocenes, based
on the kinetic resolution of racemic 2-substituted vinyl ferrocenes
via Sharpless dihydroxylation.7,8 However, this method presents
some drawbacks when applied to systems containing nitrogenated
heterocycles as substituents.9 In an effort to overcome this limita-
tion, we envisaged an organocatalytic kinetic resolution of racemic
planar-chiral ferrocenecarbaldehydes.10

Since the rediscovery of proline catalysis by List, Lerner, and
Barbas,11 the aldol reaction has become one of the cornerstones
of organocatalysis.12 While the proline-catalyzed aldolization has
been used for the dynamic kinetic resolution of atropisomeric
amides,13 of a-formyl-tetrahydrothipyranone derivatives,14 of b-
hydroxy aldehydes,15 and of 2-oxo-3-arylsuccinates,16 to the best
of our knowledge there are no reports in the literature dealing with
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its application to the standard kinetic resolution of planar-chiral
carbonyls. The proline-catalyzed intermolecular aldol reaction of
ketones with aldehydes takes place by an enamine-based mecha-
nism,17 in which the key, rate-limiting carbon–carbon bond-form-
ing step proceeds through the highly structured transition state
shown in Figure 1. The structure of this transition state has been
given wide support from both experimental17b,18 and theoretical
studies.19
The application of this model to the L-proline-catalyzed aldol
reaction between a ketone and a 2-substituted ferrocenecarbalde-
hyde leads to four diastereomeric transition states, as depicted in
Figure 2. Transition states I and II, with an equatorial ferrocene
moiety in the ‘chair-like’ portion of the nine-membered ring,
should in principle be more stable than transition states III and
IV. On the other hand, steric interactions between the ferrocene
2-substituent and the enamine moiety should destabilize transi-
tion state I with respect to transition state II. Assuming that the
priority of the formyl group is higher than that of the 2-substitu-
ent, the L-proline-catalyzed aldol reaction of a racemic, 2-substi-
tuted ferrocenecarbaldehyde should lead to the preferential
reaction of the (pS)-enantiomer [affording an (R)-aldol by attack
of the re-face of the aldehyde] and to the starting aldehyde enan-
tioenriched in the (pR)-isomer.
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Figure 2. Diastereomeric transition states for the L-proline-catalyzed intermolecular aldol reaction for a 2-substituted ferrocenecarbaldehyde.
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2. Results and discussion

In order to test the feasibility of the process, we initially per-
formed the organocatalytic aldol reaction of ferrocenecarbalde-
hyde 1 by using the standard conditions reported by List et al.11

As summarized in Scheme 1, the reaction readily took place with
acetone, leading to the quantitative formation of 4-ferrocenyl-3-
buten-2-one 2;20 when a more substituted ketone (cyclohexanone)
was used instead of acetone, the starting materials were recovered
unchanged after several hours at room temperature. This behavior
(i.e., the easy crotonization of the initially formed aldol adduct
and the sensitivity of the process to steric hindrance in the
ketone component) was not surprising in the light of our
previous results in the proline-catalyzed Mannich reaction of
ferrocenecarbaldehyde.21
Fe

CHO

Fe

Me
O

L-Proline 30 mol%,
DMSO:Acetone 4:1

1 2

no reaction

O

quantitative yield
(by NMR)

L-Proline 30 mol%,
DMSO

Scheme 1. Proline-catayzed intermolecular aldol reaction of ferrocene-
carbaldehyde.

Table 1
L-Proline-catalyzed aldol reaction of racemic aldehyde 3 with acetone (Scheme 2) at
different conversions

Entry % Conversion 3 (% Yielda, % eeb) 4 (% Yielda, % eeb) 5 (% Yielda, % eeb)

1 30 70, 33 15, 62 15, 57
2 35 65, 42 13, 55 22, 52
3 45 55, 53 24, 50 21, 48
4 56 44, 73 30, 40 26, 38
5 63 37, 78 41, 34 21, 36
6 95 5, ndc 65, 2 31, 8

a Yield of isolated product after chromatographic purification.
b By HPLC (Chiralcel� OD column).
c Not determined.
We next proceeded with the study of the enantioselective
organocatalytic aldol reaction of a planar-chiral ferrocenecarbalde-
hyde. For this purpose, we selected 2-(20-pyrimidyl)ferrocenecarb-
aldehyde 3 as a suitable substrate. This choice satisfied several
requisites: (a) the steric bulk of the substituent was reasonably
high, being liable to produce a significant discrimination between
the diasteromeric transition states; (b) the electron-withdrawing
character of the pyrimidyne moiety ensured a good reactivity of
the substrate; (c) the aldehyde 3 is easily synthesized both in race-
mic and in enantioenriched form, its absolute configuration being
readily ascertained both by polarimetry and by chiral HPLC.22

When the racemic aldehyde 3 was reacted with acetone in
DMSO as a solvent and L-proline as a catalyst, we obtained, after
2 h at room temperature, enantioenriched starting material, to-
gether with two different optically active reaction products: the
crotonized adduct 4 and aldol 5, as shown in Scheme 2. Interest-
ingly enough, aldol 5 was obtained in a highly diastereopure fash-
ion, according to the NMR (1H and 13C) and HPLC. The enantiomeric
excess, as well as the absolute configuration, of the recovered alde-
hyde 3 was determined after reduction to the corresponding alco-
hol with sodium borohydride, by HPLC analysis (Chiralcel� OD
column).22 We found (pR)-stereochemistry for this material by
comparison with an authentic sample,22 in accordance with the
mechanistic model in Figure 2.

We then performed the reaction at different conversions, mon-
itored by 1H NMR, and after chromatographic purification of the
reaction mixture we determined the yields and the enantiomeric
purities of the products (Table 1).
A plot of the enantiomeric excess of the recovered aldehyde 3
versus the reaction conversion allowed us to establish, without
doubt, the existence of a kinetic resolution process, for which an
(S)-selectivity factor23 of 9.2 was calculated.

In order to confirm that aldol products 4 and 5 were mostly
arising from the (pS)-enantiomer of 3, an enantioenriched sample
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Scheme 2. Kinetic resolution of planar–chiral ferrocenecarbaldehyde 3 by asymmetric organocatalytic aldol reaction with acetone.

Figure 3. X-ray crystal structure of the aldol adduct 5, showing a (R*,pS*) relative
configuration for this compound.
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of (pR)-3 (85% ee, prepared independently,22 was reacted with ace-
tone in the presence of racemic proline as the catalyst (Scheme 3).
After 17 h at room temperature, (pS)-4 and (S,pR)-5 were isolated
in 35% and in 47% yields, respectively. Please note the change in
the relative priority of the ferrocene substituents between 3 and
4 and between 4 and 5.

The stereochemical assignment of the products arising from the
kinetic resolution process was completed thanks to an X-ray dif-
fraction analysis of 5,24 which unambiguously established an
(R*,pS*) relative configuration for this compound (Fig. 3). The aldol
adduct 5 thus arises from a reaction path going through the tran-
sition state II of Figure 2.

In the initial stages of the kinetic resolution, the crotonized
compound 4 appears to originate from the initially formed (S,pS)-
diastereomer of 5. It can be seen from the data in Table 1 that both
the products are obtained with a very similar enantiomeric purity
and, for conversions lower than 60%, with comparable yields (en-
tries 1–4). Only for more prolonged reaction times is the yield of
4 much higher than that of 5, suggesting that some of the product
4 in entries 5 and 6 of Table 1 arises from the dehydration of the
(R,pS)-isomer of 5. These observations seem to indicate that transi-
tion states II and III in Figure 2 have comparable energies in the
case of aldehyde 3, and that the kinetic resolution is dominated
by the relatively higher energies of the transition states I and IV.
We hypothesize that hydrogen bonding between one of the pyrim-
idyne nitrogens and the carboxylic acid group can stabilize transi-
tion state III, that leads to the (S,pS)-aldol product (Fig. 4).

The easy dehydration of the (S,pS)-diastereomer could also be
tentatively explained by the presence of a hydrogen bond of the
protonated hydroxyl with a pyrimidine nitrogen. The formation
of this hydrogen bond would be much less favorable for the
(R,pS)-diastereomer, because it would lead to repulsive steric inter-
actions between the acetone and the ferrocene moieties (Fig. 5).

3. Conclusions

In conclusion, we have reported the first example of an organo-
catalytic kinetic resolution of a planar-chiral compound, that takes
place with moderate selectivity. The observed stereochemical out-
Fe
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Scheme 3. Aldol reaction of ferrocenecarbaldehyde p
come of the resolution fits reasonably well within the mechanistic
model commonly accepted for proline-catalyzed aldol reactions.
Mechanistic studies, synthetic applications of this transformation,
and the development of other kinetic resolutions based on this
concept are currently being pursued in our laboratory.25

4. Experimental

4.1. General experimental procedure for the organocatalyzed
aldol reactions of 311,26

In a small glass vial, a solution of proline (3.0 mg, 0.026 mmol),
2-(2’-pyrimidyl)ferrocenecarbaldehyde 322 (25 mg, 0.086 mmol),
and acetone (0.17 mL, 2.3 mmol) in DMSO (0.68 mL) was stirred
at room temperature and monitored by 1H NMR. Once the desired
conversion was achieved, the reaction mixture was poured over
brine (5 mL) and diluted with water (5 mL). The resulting solution
was extracted with ethyl acetate (3 � 15 mL), and the combined
organic phases were dried over anhydrous sodium sulfate. Elimina-
yield, 56% ee)
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R-3 with acetone catalyzed by racemic proline.
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tion of the solvents under reduced pressure afforded the crude
reaction mixture that was purified by column chromatography
on silicagel, using hexanes–ethyl acetate mixtures of increasing
polarity (from 5% to 50% ethyl acetate) led to the isolation of unre-
acted aldehyde 3, of the crotonized product 4 and of the aldol ad-
duct 5.

4.2. Spectral and analytical data for compounds 4 and 5

4.2.1. (pR,E)-4-[2-(20-Pyrimidyl)ferrocenyl]but-3-ene-2-one, 4
Orange gum; ½a�20

D ¼ þ648 (c 0.05, CHCl3); IR (NaCl film): 2924,
1700, 1653, 1588, 1506, 1457, 1397, 812, 438 cm�1; 1H NMR
(400 MHz, CDCl3): d 8.82 (d, J = 16. 4 Hz, 1H), 8.62 (d, J = 4.8 Hz,
2H), 7.03 (t, J = 5.0 Hz, 1H), 6.39 (d, J = 16. 4 Hz, 1H), 5.35 (m,
1H), 4.84 (m, 1H), 4.65 (m, 1H), 4.02 (s, 5H), 2.33 (s, 3H) ppm;
13C NMR (100 MHz, CDCl3): d 198.8 (C), 169.5 (C), 156.7 (2 CH),
146.5 (CH), 126.1 (CH), 117.7 (CH), 82.3 (C), 79.3 (C), 73.6 (CH),
71.9 (CH), 71.4 (5 CH), 68.9 (CH), 29.7 (CH3) ppm; HRMS (ESI-
TOF+): m/z calcd for C18H17FeN2O [M+H+]: 333.0684; found:
333.0676. The enantiomeric excess (ee) was determined to be
56% by HPLC using a Chiralcel OD column (30% i-PrOH/hexanes,
0.7 mL/min, 254 nm): Retention time (pR, 9.30 min), retention time
(pS, 26.8 min).

4.2.2. (R,pS)-4-[2-(20-Pyrimidyl)ferrocenyl]4-hydroxy-2-
butanone, 5

Orange solid, mp 116–117 �C; ½a�20
D ¼ �28 (c 0.05, CHCl3); IR

(KBr): 3853, 2361, 2338, 1734, 1653, 1615, 1569, 1558, 1506,
1479, 1398, 1253, 812, 668, 418, 408 cm�1; 1H NMR (300 MHz,
CDCl3): d 8.63 (d, J = 4.8 Hz, 2H), 7.09 (t, J = 4.8 Hz, 1H), 6.36 (br
s, 1H), 5.32 (m, 1H), 5.20 (m, 1H), 4.46 (m, 1H), 4.41 (t, J = 2.4 Hz,
1H), 4.19 (s, 5H), 2.96 (m, 2H), 2.30 (s, 3H) ppm; 13C NMR
(75 MHz, CDCl3): d 208.3 (C), 170.0 (C), 156.7 (2 CH), 117.1 (CH),
94.6 (C), 71.0 (CH), 70.6 (CH), 70.2 (5 CH), 70.2 (C), 68.8 (CH),
64.1 (CH), 50.3 (CH2), 30.6 (CH3) ppm; HRMS (ESI-TOF+): m/z calcd
for C18H19FeN2O2 [M+H+]: 351.0782; found: 351.0778. The enan-
tiomeric excess (ee) was determined to be 52% by HPLC using a
Chiralcel OD column (30% i-PrOH/hexanes, 0.7 mL/min, 254 nm):
Retention time (S,pR, 10.1 min), retention time (R,pS, 12.4 min).
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